Ультрафиолетовое излучение обладает рядом интересных свойств, позволяющих использовать его для ускорения химических реакций, печати микросхем, сверхчеткой микроскопии и ряда других научных и промышленных задач. За последние годы физики и инженеры создали десятки видов ультрафиолетовых лазеров и источников света в надежде разработать на их основе световые компьютеры и системы передачи данных.
Тем не менее сделать это пока не удалось, в том числе и из-за того, что интеграция ультрафиолетовых лазеров в микросхемы затруднена по той причине, что лишь некоторые твердые материалы могут вырабатывать ультрафиолет сам по себе. Еще меньше материалов может вырабатывать ультрафиолет, не тратя при этом гигантское количество энергии.
Цыпкин и его коллеги нашли решение этой проблемы, научившись преобразовать другой, более удобный вид излучения – свет обычного инфракрасного лазера – в сверхкороткие лазерные пучки ультрафиолета.
Эту задачу они решили, создав нанопленку из кремния, покрытую множеством выступов и ямок, особым образом взаимодействующих со светом. Эти выступы, как объясняют ученые, "нарисованы" на поверхности пленки таким образом, что поглощают импульсы лазера на определенной длине волны и переизлучают их в форме очень коротких ультрафиолетовых вспышек, длящихся около фемтосекунды (10 в минус 15 степени секунды).
Другие источники ультрафиолетового излучения вырабатывают более яркие пучки и обладают более высоким КПД, но при этом пленка, созданная Цыпкиным и его коллегами, формирует более кучное и плотное излучение, для получения которого обычно используются громоздкие и дорогостоящие системы. Поэтому, как считают петербургские ученые, их изобретение найдет свое место в телекоммуникационных технологиях и в науке.